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1. INTRODUCTION 

THE FLOW regulation of fluid systems involving transient 
laminar forced convection has become important in con- 
nection with high performance heat transfer equipment 
requiring precision control. Previous mathematical and 
experimental investigations have been limited mostly to the 
cases of steady flow with changes in wall heat flux, inlet 
temperature or wall temperature [1-71 . The problem con- 
cerning combined thermal and momentum start-up has been 
given little attention. Creffand Andre [8] provided numerical 
solutions for certain flow conditions including a pulsating 
flow situation. 

In the combined thermal-momentum start-up problem, 
both the velocity and temperature profiles change with time. 
The solution of  the combined thermal-momentum problem 
is complicated mathematically due to coupling of  the partial 
differential equations of  energy, momentum and continuity. 
In the approach used here for the constant-property 
combined thermal-momentum start-up in long pipes, the 
momentum equation is decoupled from the energy equation. 
Szymanski's [9] analytical velocity profile for the momentum 
equation is substituted into the energy equation which is 
solved numerically for the combined thermal-momentum 
start-up. The results for the variation of  Nusselt number and 
average temperature are presented at various dimensionless 
times. A thermal start-up time parameter (Fo0.99)--defined 
in terms of Fourier number at which the average fluid tem- 
perature reaches 99% of  the corresponding steady state 
value--is introduced to qualify the transient thermal flow 
development along the pipe length. Finally, the numerical 
results are correlated to provide an estimation procedure for 
the start-up time. 

2. MATHEMATICAL FORMULATION AND 
SOLUTION PROCEDURE 

Consider a long circular pipe of  radius R that is filled 
initially (i.e. t = 0) with a constant-property, incompressible, 
Newtonian fluid at a constant temperature To throughout. 
At t > 0, the fluid is exposed to a constant pressure gradient 
( - A P L )  in the axial direction while a step change in tem- 
perature is simultaneously imposed at the wall (r = R, 0 < .-). 
Note that there are no entrance effects for flow development 
in long pipes, hence u =- u(r, t). 

The equations governing the heat and momentum transfer 
in axisymmetric transient laminar flow of  a constant- 
property, incompressible, Newtonian fluid in a long hori- 
zontal straight pipe are 

t Present address: Ecole Polytechnique, Montreal, 
Quebec, Canada H3C 3A7. 

pC ~i T(r,z.t)+u{r,t) ~/zT(r,c,t) r cr cr T(r,c,t) 

(1) 

p :  u(r.l) + -  ~ - | r \ -u ( r , t ) | .  (2) 
~r = ~ r c r  L , ,  

The initial conditions for the combined thermal momentunl 
start-up problem are 

T(r,z,O)= To; 0 < z ,  0 < r <  R (3) 

u(r,O)=O; 0 < r < R .  (4) 

The boundary conditions are 

u(R. t )=O: 0 < t  (5) 

: u(0, t ) = 0 :  0 < t  (6) 
er 

T(r,O,t)= To; 0 < r < R ,  0 < t  (7) 

T(R,z , t )=  T~: O<z.  0 < t  (8) 

. -T(O, - . t )=O:  0<- - .  ( ) < t .  (9) 
c r  

Since the fluid properties are assumed to be independent 
of temperature, the momentum equation is not coupled to the 
energy equation and therefore may' be solved analytically [4]. 
The following velocity distribution for flow start-up in long 
pipes was given by Szymanski [9] 

q5 = ( I - ~ Z ) - 8  
J0 (:~, -, ) 

~ 7 - , ,  - - c  o (I0) 
% :~; J. (:~,) 

where :t, are the positive roots of J0(:t,). The terms 4), ,~ and 
in equation (I0) are 

u r l~l 
c~= - A P R Z  41~L" ~ - R "  r - p R ' -  ( l i )  

Note that the pressure gradient ( - A P / L )  should not be 
greater than 8000 I*"/pR 3 in order for the flow to be laminar 
(i.e. Re < 2000). The use of  equation (10) as the solution to 
equation (2) simplifies the combined thermal momentum 
start-up problem to a single partial differential equation (i.e. 
equation ('1)). Equation (1) was expressed in finite difference 
form and the resulting set of non-linear equations was solved 
numerically using a Newton-Raphson convergence scheme. 
The details of  grid distribution and numerical technique are 
presented elsewhere [I0, 11]. 

3. RESULTS AND DISCUSSION 

For comparison, two steady-flow thermal-entry problems 
involving a step change in wall temperature are considered. 
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N O M E N C L A T U R E  

C specific heat [J kg- l K -  i] t 
Fo Fourier number, kt/pCR "- u 
Foo.99 thermal start-up time parameter a 
h local heat transfer coefficient X + 

k(eT/dr)~/(T,-  ? ) [ W m  -2 K- '] 
J0, J,  Bessel function of the first kind of order 0, 1 
k thermal conductivity [J m-  t K-  ~] 
Nu local Nusselt number, 2hR/k 
Pr Prandtl number, #C/k 
- AP/L pressure gradient [Pa m-  ~] 
R pipe radius [m] 
r radial distance [m] 
Re Reynolds number, 2p6R/,u 
T temperature [K] 
7" bulk temperature [K] 
To initial and inlet temperature [K] 
T~, wall temperature [K] 

time [s] 
axial velocity [m s- ~1 
average axial velocity [m s- t] 
dimensionless distance, (:/R)/(Re Pr) 
axial distance [m]. 

Greek symbols 
z, positive roots of J0(x,) 
0 dimensionless temperature, 

(~ ' -  T . ) / ( T o -  T~) 
p dynamic viscosity [Pa s] 

dimensionless radial distance, r/R 
p density [kg m-  3] 
r dimensionless time. pt/pR 2 

velocity distribution parameter, 
4u#L / ( -AP)R ' .  

The first is the well-known Graetz problem concerning steady 
state laminar forced convection in circular pipes. The second 
problem examines the transient behaviour of the Graetz 
problem, for which a solution was proposed by Cotta and 
Ozisik [5]. The solutions for these two problems are com- 
pared in Fig. 1. For short X ÷, the dimensionless temperature 
for the transient problem approaches the Graetz solution 
almost immediately. However, the start-up time is seen to 
increase with X +. At X + = 0.1, for example, the thermal 
start-up is accomplished at Fo < 02. 

The calculated temperature profiles for the combined ther- 
mal-momentum start-up problem are compared with the 
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FIG. 1. Temperature profiles for the transient and steady 

state cases of the Graetz problem. 

Graetz solution in Fig. 2. The results are markedly different 
from those in Fig. I for the transient Graetz problem. At 
early times (i.e. small Fo), conduction as opposed to forced 
convection is the predominant mode of heat transfer because 
the fluid velocity is quite small. Hence, the thermal state 
along the pipe length is nearly uniform. As the velocity 
development proceeds with time, the relative magnitude of 
the convective mode of heat transfer increases. At Fo = 0.2, 
the temperature profile is far from the steady state Graetz 
solution but is beginning to approach it. 

The calculated Nusselt number values for the combined 
thermal-momentum start-up problem are plotted, and com- 
pared with the Graetz solution, in Fig. 3. At very small X +, 
the Nusselt number increases with an increase in Fourier 
number. But at large X +, Nu decreases with time from an 
initially larger value to approach the Graetz solution. 

To quantify the difference between the start-up times for 
the transient Graetz problem and the combined thermal- 
momentum problem, a thermal start-up time parameter, 
Foo99, is defined. For a given X +, Foo~9 gives the time 
at which the dimensionless temperature 0 is 99% of the 
corresponding Graetz solution. The start-up time parameters 
for the transient Graetz and the combined thermal-momen- 
tum problems are compared in Fig. 4. Clearly, Foo.99 for the 
combined thermal-momentum problem is much larger than 
that for the transient Graetz problem. This seems reasonable 
in view of the fact that the mode of heat transfer changes from 
conduction to forced convection in the combined thermal- 
momentum problem as opposed to forced convection 
throughout for the transient Graetz problem. Based on 
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FIG. 2. Development of the temperature profile for the com- 
bined thermal-momentum start-up problem• 
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FIG. 3. Calculated Nusselt number for the combined ther- 
mal-momentum start-up problem. 
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FIG. 4. Thermal start-up times for the transient Graetz and 
the combined thermal momentum start-up problems. 

the results presented in Fig. 4, equations (12) and (13) are 
proposed for estimating the start-up time in the transient 
Graetz and the combined thermal momentum problems, 
respectively : 

transient Graetz 

Foo~ = 1.2(X+)3'4; (12) 

cornbined thermal momentum 

fo09~ = 1.5(X+) ~ ~ (13) 

4. CONCLUSIONS 

A solution method is outlined for the combined thermal- 
momentum start-up problem. By assuming the fluid prop- 
erties to be constant, the momentum equation is decoupled 
from the energy equation. The energy equation is expressed 
in a finite difference form and solved numerically with the 
velocity profile calculated from the analytical solution of  the 
momentum equation. Results indicate that the start-up time 
for the combined thermal-momentum start-up problem is 
much larger than that for the transient Graetz problem. 
Simple correlations are proposed for the start-up time for 
the two transient laminar heat transfer problems. 
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Moisture and temperature dependence of the moisture diffusivity 
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THE DEPENDENCE of  the moisture diffusivity D(u, T) on the 
moisture content u and on the temperature T is important 
not only in technical applications of  porous materials, but it 
can also yield valuable information on the mechanism of  
the unsaturated water flow in capillary-porous media. It is 

usually assumed [1] that in the transport of the liquid phase 
the surface tension o- plays the role of  the driving force 
and the viscosity ~7 of the liquid is responsible for energy 
dissipation that leads to a quasi-stationary character of water 
flow. Dimensional analysis yields the following expression 


